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Introduction

▶ PET is an essential
neuroimaging tecnique used
to quantify the
concentration of molecular
targets in the brain.

▶ It has been used to study
various disease and assess
brain health.

Figure 1: PET scanner
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Preprocessing strategies for PET data

▶ PET preprocessing workflow, optimization strategies,
variations in preprocessing steps
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▶ Motion Correction

▶ Co-Registration

▶ Delineation of Volumes of
Interest

▶ Partial Volume Correction

▶ Pharmacokinetic Modelling
Figure 2: Neuroimaging workflow.
Image adapted from [3]
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Motion Correction

▶ Remove motion
artefacts due to head
movements or
respiration.

▶ Mean, sum or median
image can be used as a
reference image

Figure 3: Motion of a rigid body. a

ahttp://www.newbi4fmri.com/tutorial-5-motion
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Co-Registration

▶ PET images are
studied along with its
corresponding
anatomical MR
image.

▶ They need to be
co-registered.

▶ Common techniques
include Boundary
based registration,
normalized mutual
information based
registration.

Figure 4: PET-MR coregistration for a
subject from the PET-CIMBI dataset
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Delineation of Volumes of Interest

▶ Delineate subset of
regions or structures
within the brain using
predefined brain atlases.

▶ PETSurfer provides an
implementation for this.

Figure 5: Segmention of brain regions using
PETSurfer for an example subject from
PET-CIMBI dataset
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Partial Volume Correction

▶ Limited spatial resolution of
PET scanners causes Partial
Volume Effects.

▶ These need to be corrected
for. Common techniques
used for this are Muller
Gartner, Geometric transfer
Matrix based methods.

Figure 6: The above figures show partial voluming
effects. Images adapted from Andy’s Brain Blog
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Pharmacokinetic Modelling

▶ Used to quantify radiotracer
binding at the receptor site
and output a
non-displacable binding
potential.

▶ Kinetic Models can be fit
using Time Activity Curves
for different regions to
estimate BPnd values

▶ Some of the kinetic
modelling techniques are
SRTM, MRTM1, MRTM2.
Implementations of these
models have been provided
in PETSurfer.

Figure 7: Activity Curves for different brain
regions
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Reproducibility crisis in the neuroimaging community
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▶ Concerns have been raised over the results published by
neuroimaging studies not being reproducible and generalizable.

▶ This may be attributed to lack of standardized pipelines for
processing and analysis of neuroimaging data.

▶ In order to enhance trustworthiness in the results published by
various neuroimaging studies, it is important to promote data
and code sharing.

▶ To promote transparency in methodology it is also essential to
provide full details of the pipelines used for analysis.
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How do we define reproducibility and robustness?

• Computational
Reproducibility: When
detailed information is provided
about code, software, hardware
and implementation details, the
results from the preprocessing
pipeline should be consistent
across different computational
environments.

• Robustness: The
preprocessing pipeline should
be robust to errors and should
be able to run successfully on
data coming from different
different radiotracers and PET
scanners.

Figure 8: Image adapted from The
Turing Way handbook. DOI:
10.5281/zenodo.3332807
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Figure 9: Reproducible Research. Image adapted from The Turing Way
handbook DOI: 10.5281/zenodo.3332807
https://the-turing-way.netlify.app/welcome.html
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Objectives

• Development of a preprocessing pipeline involving motion
correction, co-registration, delineation of volumes of interest
and partial volume correction and pharmacokinetic modelling.

• Integration of all these into a single workflow implemented in
Python.

• Testing and evaluation of the pipeline against several datasets
coming from different radiotracers and PET scanners.

• Releasing the pipeline to the community as open source code
and fully executable in a docker container.
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Dataset

▶ [11C]SB207145 PET CIMBI [1] (1
subject, 1 baseline & 1 rescan
session for each subject)

▶ [11C]DASB PET CIMBI [2] (2
subjects, 1 baseline & 1 rescan
session for each subject)

▶ [11C]DASB 5-HTT [4] (16 subjects,
1 baseline & 1 rescan session for
each subject)

Figure 10: T1 weighted MR image for
the baseline session for a subject from the
PET CIMBI dataset.

Figure 11: PET image for the baseline
session for a subject from the PET CIMBI
dataset. 16 / 41



Input Structure: BIDS1
PET CIMBI

dataset description.json

participants.json

participants.tsv

README

sub-01

ses-baseline

anat

sub-01 ses-baseline T1w.json

sub-01 ses-baseline T1w.nii

pet

sub-01 ses-baseline pet.json

sub-01 ses-baseline pet.nii.gz

ses-rescan

anat

sub-01 ses-rescan T1w.json

sub-01 ses-rescan T1w.nii

pet

sub-01 ses-rescan pet.json

sub-01 ses-rescan pet.nii.gz

1
https://bids-specification.readthedocs.io/en/stable/
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Building the pipeline: Workflow Design and Architecture

Figure 12: Rough Sketch of the Pipeline

18 / 41



Figure 13: Visualizing the pipeline as a Directed Acyclic Graph
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Building the preprocessing pipeline using Nipype

▶ Nodes

▶ Interfaces

▶ Workflows

Node Functional Interface

Cortical Reconstruction FreeSurfer Recon-All
Motion Correction FSL MCFlirt
Co-registration Freesurfer MRI Coreg

Delineation of Volumes of Interest PETSurfer GTMSeg
Partial Volume Correction PETSurfer GTMPVC

Kinetic Modelling (MRTM1) PETSurfer MRTM1
Kinetic Modelling (MRTM2) PETSurfer MRTM2

Table 1: Summary of the interfaces
& inputs for the PETPipeline
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Interaction of nodes & interfaces in PETPipeline I

https://drive.google.com/file/d/1pUOebAfr9Y2WmsP0LOwO-XVkduORX-IR/view?usp=sharing
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Interaction of nodes & interfaces in PETPipeline II

https://drive.google.com/file/d/1pUOebAfr9Y2WmsP0LOwO-XVkduORX-IR/view?usp=sharing
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Final Outcome: PETPipeline

Figure 15: Overview of the PETPipeline repository on Github

https://github.com/openneuropet/petpipeline
23 / 41
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User Interaction with PETPipeline
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Computational Environments for Testing

A computational environment here broadly refers to the system
where a particular piece of code or an application is run. It consists
of hardware features (CPUs, cores etc.) and software features such
as OS, software installed (including their version and
configuration), programming language etc.

Name OS CPU N Processors RAM

VM (Virtual Box) Ubuntu 18.04 Intel i7-7700 2.8 Ghz 2 (1) 10 GB

NRU Server openSuse Leap 15.3 Intel(R) Xeon(R) 3.00 Ghz 72 (used 30) 750 GB

Docker 1 Ubuntu 20.04 Intel i7-7700 2.8 GHz 2 (1) 10 GB

Docker 2 Ubuntu 20.04 (QC Intel i7 2.2 GHz) (1) 12 GB

Table 2: Summary of computational environments for processing of the
data using PETPipeline
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Evaluation
▶ 14 brain regions were chosen for analysis namely amygdala,

thalamus, putamen, caudate, anterior cingulate cortex,
hippocampus, frontal cortex, occipital cortex, temporal cortex,
parietal cortex, entorhinal cortex based on previous studies by
Nørgaard et al. [3]

▶ To test for differences in binding potential (BP) across brain
regions and between different computational environments, we
did a one way ANOVA, and also compared the regression
slopes for statistical differences.

▶ The test-retest bias metric [3] was computed between the
resulting BP estimates from kinetic modelling obtained as a
result of running the pipeline across various computational
environments to identify any differences.

Biasi ,j =
retesti ,j − testi ,j

testi ,j
∗ 100
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Do we see any differences?

Regions VM Docker1 Server Docker2 Mean Variance

Amygdala 1.66547 1.663995 1.634389 1.663995 1.656962 0.000227

Caudal Anterior Cingulate Cortex 0.707916 0.708198 0.714869 0.708198 0.709795 1.1e-05

Caudate 1.505885 1.507484 1.472801 1.507484 1.498413 0.000292

Entorhinal Cortex 1.008542 1.008232 0.946286 1.008232 0.992823 0.000963

Hippocampus 0.326675 0.324846 0.343451 0.324846 0.329954 8.2e-05

Inferior Temporal Cortex 0.395526 0.39625 0.371875 0.39625 0.389975 0.000146

Insula 0.966093 0.967939 0.928386 0.967939 0.957589 0.00038

Medial Orbitofrontal Cortex 0.421494 0.423251 0.501818 0.423251 0.442454 0.001567

Occipital Cortex 0.284816 0.282593 0.28846 0.282593 0.284616 8e-06

Putamen 1.896689 1.896622 1.880213 1.896622 1.892536 6.7e-05

Superior Frontal Cortex 0.377558 0.376259 0.374473 0.376259 0.376137 2e-06

Superior Parietal Cortex 0.565708 0.566033 0.563758 0.566033 0.565383 1e-06

Superior Temporal Cortex 0.465539 0.461582 0.470955 0.461582 0.464914 2e-05

Thalamus 1.48164 1.483333 1.451222 1.483333 1.474882 0.000249

Table 3: Mean BP values for 14 different brain regions and across 4
different computational environments for a single subject from the
[11C]DASB 5-HTT dataset
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Differences across computational environments

Figure 16: Mean BP estimates across 2 subjects and 2 sessions for
different environments for two brain regions from the [11C]DASB 5-HTT
dataset.
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Differences across subjects

Figure 17: Slope estimates of BP across different brain regions for
different subjects and sessions across different computational
environments. 30 / 41



Why do these differences arise?

▶ significant bias across brain regions
and variance in the bias across
subjects

▶ Variations due to difference in the
cortical and sub-cortical
segmentations obtained.

▶ Difference in the operating system,
library and system call interception
and floating point arithmetic as
previous studies show

Figure 18: Time activity curve for the Medial
Orbitofrontal Cortex across two different computational
environments (VM and server), highlighting the uptake of
radioactivity within this region as a function of time

31 / 41



Why do these differences arise?

▶ significant bias across brain regions
and variance in the bias across
subjects

▶ Variations due to difference in the
cortical and sub-cortical
segmentations obtained.

▶ Difference in the operating system,
library and system call interception
and floating point arithmetic as
previous studies show

Figure 18: Time activity curve for the Medial
Orbitofrontal Cortex across two different computational
environments (VM and server), highlighting the uptake of
radioactivity within this region as a function of time

31 / 41



Why do these differences arise?

▶ significant bias across brain regions
and variance in the bias across
subjects

▶ Variations due to difference in the
cortical and sub-cortical
segmentations obtained.

▶ Difference in the operating system,
library and system call interception
and floating point arithmetic as
previous studies show

Figure 18: Time activity curve for the Medial
Orbitofrontal Cortex across two different computational
environments (VM and server), highlighting the uptake of
radioactivity within this region as a function of time

31 / 41



Why do these differences arise?
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Is the pipeline robust and computationally reproducible?

▶ Since the pipeline completed running successfully on different
datasets, the developed pipeline seems to be robust.

▶ The results can be replicated given that the computational
environment is consistent in terms of the software packages,
operating system and configuration parameters used.

▶ The details of the preprocessing including the inputs and
outputs to the various preprocessing steps are captured as a
computation graph making the methodology transparent and
reproducible.
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Summary of strengths and weaknesses

× Limited Testing across environments and subjects.

× No flexibility in terms of including/excluding preprocessing
steps in PETPipeline.

× No flexibility in terms of software tools for preprocessing steps
in PETPipeline.

✓ Flexibility offered in terms of changing parameters of
individual steps

✓ Code and documentation available thereby making
PETPipeline reproducible

✓ Documentation available for making the pipeline fully
executable in a docker container.
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Conclusion

▶ An automated pipeline was developed for preprocessing of PET
images using Nipype, and made available on GitHub.

▶ The pipeline ran successfully on all datasets indicating that it is
robust to errors.

▶ Using the same computational resources such as OS, software
packages, versions and configurations across different computational
environments allows us to fully replicate the results indicating that
the pipeline is reproducible.
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Conclusion & Future Work

▶ Testing on computational environments with different
computational resources showed variations in the resulting BP
estimates across brain regions and subjects.

▶ These may be attributed to a difference in cortical and sub-cortical
segmentations obtained by FreeSurfer when run on different
computational environments.

▶ More thorough testing would help in further investigating these
differences which can aid in further understanding the cause.

36 / 41



Conclusion & Future Work

▶ Testing on computational environments with different
computational resources showed variations in the resulting BP
estimates across brain regions and subjects.

▶ These may be attributed to a difference in cortical and sub-cortical
segmentations obtained by FreeSurfer when run on different
computational environments.

▶ More thorough testing would help in further investigating these
differences which can aid in further understanding the cause.

36 / 41



Conclusion & Future Work

▶ Testing on computational environments with different
computational resources showed variations in the resulting BP
estimates across brain regions and subjects.

▶ These may be attributed to a difference in cortical and sub-cortical
segmentations obtained by FreeSurfer when run on different
computational environments.

▶ More thorough testing would help in further investigating these
differences which can aid in further understanding the cause.

36 / 41



References I

[1] Melanie Ganz-Benjaminsen and Martin Nørgaard.
“”[11C]DASB PET Cimbi database example””. In: (2021).
doi: 10.18112/openneuro.ds001420.v1.1.0.

[2] Melanie Ganz-Benjaminsen and Martin Nørgaard.
“”[11C]SB207145 PET Cimbi database example””. In:
(2021). doi: 10.18112/openneuro.ds001421.v1.2.1.

[3] Martin Nørgaard et al. “Optimization of preprocessing
strategies in Positron Emission Tomography (PET)
neuroimaging: A [11C]DASB PET study”. In: NeuroImage
199 (2019), pp. 466–479.

[4] R Todd Ogden et al. “In vivo quantification of serotonin
transporters using [(11)C]DASB and positron emission
tomography in humans: modeling considerations”. en. In: J.
Cereb. Blood Flow Metab. 27.1 (Jan. 2007), pp. 205–217.

37 / 41

https://doi.org/10.18112/openneuro.ds001420.v1.1.0
https://doi.org/10.18112/openneuro.ds001421.v1.2.1


Thank you!

Questions?
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Additional Slides I

Statistical tests

▶ One Way ANOVA using computational environments as
repeated measures for 2 brain regions. ANOVA (Analysis of
Variance) is a statistical test used to analyze the difference
between the means of more than two groups

▶ Simple Linear Regression to find the best-fit slope and
intercept for the various subjects and sessions across different
computational environments. Comparison of Regression slopes
using p values to evaluate the differences.
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Additional Slides II

Choice of programming language, and library (Nipype) for
implementation

▶ Python: open source language, community support.
Implementation of various neuroimaging tools such as PyBids,
Nibabel, Nilearn available for neuroimaging analysis.

▶ Nipype: Interfaces to various command-line based
neuroimaging software such as FSL, AFNI, Freesurfer
available. Enables interaction between these tools in a single
workflow, combine multiple workflows into a single workflow.
Allows for parallel processing across multiple subjects in a
dataset.
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Additional Slides III

Why BIDS?
▶ All data may not be necessarily available in the same format.

Different datasets can be in different formats such as Dicom,
Analyze etc.

▶ All the datasets need to be organized in a single format so that
standardized neuroimaging pipelines can be run on them. BIDS
provides a way to organize and structure the complex neuroimaging
data coming from different neuroimaging modalities. Widely
adopted by the neuroimaging community, a variety of tools have
been developed around it to promote data sharing, validation,
processing and analysis.

▶ BIDS also lists a specification for the derivatives of the various
image processing techniques applied on the datasets.

▶ Moreover, using a standardized structure promotes reproducibility as
it allows researchers to share each other’s experimental results, and
promotes the development of software that can process
neuroimaging data following the BIDS structure.
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