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Introduction

» PET is an essential
neuroimaging tecnique used
to quantify the
concentration of molecular
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Introduction

» PET is an essential
neuroimaging tecnique used
to quantify the
concentration of molecular
targets in the brain.

» It has been used to study
various disease and assess

brain health. Figure 1: PET scanner
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Preprocessing strategies for PET data
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Figure 2: Neuroimaging workflow.
Image adapted from [3]
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» Remove motion
artefacts due to head
movements or
respiration.
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Figure 3: Motion of a rigid body. ?

“http:/ /www.newbi4fmri.com/tutorial-5-motion
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Co-Registration

» PET images are
studied along with its
corresponding
anatomical MR
image.

Figure 4. PET-MR coregistration for a
subject from the PET-CIMBI dataset
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Co-Registration

» PET images are
studied along with its
corresponding
anatomical MR
image.

» They need to be
co-registered.

» Common techniques
include Boundary
based registration,
normalized mutual

Figure 4. PET-MR coregistration for a

information based subject from the PET-CIMBI dataset
registration.
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Delineation of Volumes of Interest

» Delineate subset of
regions or structures
within the brain using
predefined brain atlases.

Figure 5: Segmention of brain regions using
PETSurfer for an example subject from
PET-CIMBI dataset
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Delineation of Volumes of Interest

» Delineate subset of
regions or structures
within the brain using
predefined brain atlases.

» PETSurfer provides an
implementation for this.

Figure 5: Segmention of brain regions using
PETSurfer for an example subject from
PET-CIMBI dataset
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Partial Volume Correction

Is \/"&el dctive
becauselef

region B, or both?

» Limited spatial resolution of
PET scanners causes Partial
Volume Effects.

» These need to be corrected
for. Common techniques
used for this are Muller
Gartner, Geometric transfer
Matrix based methods.

FIgU re 6: The above figures show partial voluming
effects. Images adapted from Andy’s Brain Blog
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Pharmacokinetic Modelling

Time Activity Curves for various brain regions

» Used to quantify radiotracer
binding at the receptor site
and output a
non-displacable binding
potential.

Time frame (star in seconds)

Figure 7: Activity Curves for different brain
regions
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Pharmacokinetic Modelling

Time Activity Curves for various brain regions

> Used to quantify radiotracer
binding at the receptor site
and output a
non-displacable binding
potential.

> Kinetic Models can be fit
using Time Activity Curves
for different regions to
estimate BPnd values

» Some of the kinetic ! o - a0 s i -
modelling techniques are Timefame st nsecon
SRTM, MRTM1, MRTM2.
Implementations of these
models have been provided
in PETSurfer. Figure 7: Activity Curves for different brain

regions
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Abstract

Functional neurcimaging techniques have transformed our abilty to probe the neurobiological basis
of behaviour and are increasingly being appiied by the wider neuroscience community. However,
concens have recently been raised that the conclusions that are drawn from some human
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studies are either spurious or ot generalzable. Problems such as low stastical power,
flexibility in data analyss,software errors and a ack of direct replication apply to many fields, but
perhaps particularly to functional MRI. Here, we discuss these problems, outine current and
suggested best practices, and describe how we think the field should evolve to produce the most
meaningful and reliable answers to neuroscientific questions
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» Concerns have been raised over the results published by
neuroimaging studies not being reproducible and generalizable.
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Concerns have been raised over the results published by
neuroimaging studies not being reproducible and generalizable.

This may be attributed to lack of standardized pipelines for
processing and analysis of neuroimaging data.

In order to enhance trustworthiness in the results published by
various neuroimaging studies, it is important to promote data
and code sharing.

To promote transparency in methodology it is also essential to
provide full details of the pipelines used for analysis.
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How do we define reproducibility and robustness?

e Computational
Reproducibility: When
detailed information is provided
about code, software, hardware
and implementation details, the
results from the preprocessing
pipeline should be consistent
across different computational
environments.

REPRODUCIBLE
0

0 2

o

SAME PATA

SAME ANALYSLS ?} :
P (—J

Qnr

=g

Figure 8: Image adapted from The
Turing Way handbook. DOI:
10.5281/zenodo.3332807
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How do we define reproducibility and robustness?

e Computational
Reproducibility: When

detailed information is provided REPRODUCIBLE
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results from the preprocessing
pipeline should be consistent
across different computational
environments.

=g

® Robustness: The Qo9
preprocessing pipeline should
be robust to errors and should Figure 8: Image adapted from The
be able to run successfully on Turing Way handbook. DOI:
data coming from different 10.5281/zenodo.3332807
different radiotracers and PET
scanners.
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Figure 9: Reproducible Research. Image adapted from The Turing Way
handbook DOI: 10.5281 /zenodo.3332807
https://the-turing-way.netlify.app/welcome.html
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Objectives

® Development of a preprocessing pipeline involving motion
correction, co-registration, delineation of volumes of interest
and partial volume correction and pharmacokinetic modelling.
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Objectives

Development of a preprocessing pipeline involving motion
correction, co-registration, delineation of volumes of interest
and partial volume correction and pharmacokinetic modelling.

Integration of all these into a single workflow implemented in
Python.

Testing and evaluation of the pipeline against several datasets
coming from different radiotracers and PET scanners.
Releasing the pipeline to the community as open source code
and fully executable in a docker container.
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Dataset

> [11C]SB207145 PET CIMBI [1] (1
subject, 1 baseline & 1 rescan
session for each subject)

> [11C]DASB PET CIMBI [2] (2
subjects, 1 baseline & 1 rescan
session for each subject)

> [11C]DASB 5-HTT [4] (16 subjects,
1 baseline & 1 rescan session for
each subject)

Figure 10: T1 weighted MR image for
the baseline session for a subject from the
PET CIMBI dataset.

Figure 11: PET image for the baseline
session for a subject from the PET CIMBI
dataset. 16/41



Input Structure: BIDS!

PET_CIMBI

dataset description. json

participants.json

participants.tsv

README
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pet
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! https://bids-specification.readthedocs.io/en /stable/

The brain imaging data structure, a format for
organizing and describing outputs of neuroimaging
experiments

Kezysztof 1. Gorgolewski &, Tibor Auer. .. Russell A, Poldrack  + Show authors

ic Data 3, Article number: 160044 (2016) | Cite this article.

336 Citations | 107 Altmetric

Abstract

The development of magnetic resonance imaging (MRI) techniques has defined modern
neuroimaging. Since its inception, tens of thousands of studies using techniques such as
functional MRI and diffusion weighted imaging have allowed for the non-invasive study of the
brain. Despite the fact that MRI is routinely used to obtain data for neuroscience research,
there has been no widely adopted standard for organizing and describing the data collected in
an imaging experiment. This renders sharing and reusing data (within or between labs) difficult
if not impossible and unnecessarily complicates the application of automatic pipelines and
quality assurance protocols. To solve this problem, we have developed the Brain Imaging Data
Structure (BIDS), a standard for organizing and describing MRI datasets. The BIDS standard
uses file formats compatible with existing software, unifies the majority of practices already
common in the field, and captures the metadata necessary for most common data processing
operations.
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PET-BIDS, an extension to lhe brain imaging data
. structure for posi graphy
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Building the pipeline: Workflow Design and Architecture
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Figure 12: Rough Sketch of the Pipeline
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Building the preprocessing pipeline using Nipype

Interfaces

Uniform Python API
SPM FsL FreeSurfer
Interface Interface Interface
1 |

T
1

| T
t t

+

i SPM ][ FSL ][FreeSurferl

e L Commandiin Sommaris e
roarama)

‘orograme)

Idiosynchratic, Heterogeneous APIs

" Workflow Engine

- inputs/outputs setting
- graph transformations
(e.g., iterable expansion)

» Nodes

H Node Functional Interface
Cortical Reconstruction FreeSurfer Recon-All
Motion Correction FSL MCFlirt
Co-registration Freesurfer MRI Coreg
Delineation of Volumes of Interest | PETSurfer GTMSeg
Partial Volume Correction PETSurfer GTMPVC
Kinetic Modelling (MRTM1) PETSurfer MRTM1
Kinetic Modelling (MRTM2) PETSurfer MRTM2

Table 1: Summary of the interfaces
& inputs for the PETPipeline
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Building the preprocessing pipeline using Nipype

Interfaces

Uniform Python API
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Idiosynchratic, Heterogeneous APIs

" Workflow Engine

Workflow

- inputs/outputs setting
- graph transformations
(e.g., iterable expansion)

» Nodes
» Interfaces
» Workflows

H Node ‘ Functional Interface
Cortical Reconstruction FreeSurfer Recon-All
Motion Correction FSL MCFlirt
Co-registration Freesurfer MRI Coreg
Delineation of Volumes of Interest | PETSurfer GTMSeg
Partial Volume Correction PETSurfer GTMPVC
Kinetic Modelling (MRTM1) PETSurfer MRTM1
Kinetic Modelling (MRTM2) PETSurfer MRTM2
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& inputs for the PETPipeline
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Interaction of nodes & interfaces in PETPipeline |

Raw Data
BIDS Format

| out

In |InfoSource

select
| TEiles

Anat (T1w)

Cortical
Surface
Reconstruction
(Freesurfer

Recon-all)

Motion
n out

Processed
Subjects
Dir

Conformed T1w

Delination |Out
of —
gta_
File

o
(PETSur fer
GHseq)
eonented output _registration(out LTA)
(gtn.nii.g2) motion_corrected PET (in_file)

https:/ /drive.google.com/file/d /1pUOebAfroY2WmsPOLOwO-XVkduORX-IR /view?usp=sharing
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Interaction of nodes & interfaces in PETPipeline Il

Delination |Out

https:/ /drive.google.com/file/d /1pUOebAfroY2WmsPOLOwO-XVkduORX-IR /view?usp=sharing
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Final Outcome: PETPipeline

@ mnoergaard Update km and k2 to represent mrtm1 and mrtm2 13co150 13 daysago D 64 commits
W petpipeline Update km and km? to represent mrtm?1 and mrtm2 13 days ago
O  UCENSE Initial commit 3 months ago
O READMEmd Update README.md 14 days ago
D setupcig refactoring code 3 months ago
O setuppy [GIT] manually resolving conflict 17 days ago
= READMEmd 7

PETPipeline
Repository to showcase a pipeline for pre-processing PET data using Nipype workflows
[ Table of Contents

¥ Table of Contents
1. About The Project
2. Prerequisites
3. Repository Overview
4.Installation
5. Usage
6. Configuration
7. Output Structure
8. License

Figure 15: Overview of the PETPipeline repository on Github

https://github.com/openneuropet/petpipeline
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User Interaction with PETPipeline
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Computational Environments for Testing

A computational environment here broadly refers to the system
where a particular piece of code or an application is run. It consists
of hardware features (CPUs, cores etc.) and software features such
as OS, software installed (including their version and
configuration), programming language etc.

H Name ‘ oS ‘ CPU ‘ N_Processors ‘ RAM H
VM (Virtual Box) Ubuntu 18.04 Intel i7-7700 2.8 Ghz 2 (1) 10 GB
NRU Server openSuse Leap 15.3 | Intel(R) Xeon(R) 3.00 Ghz | 72 (used 30) | 750 GB
Docker 1 Ubuntu 20.04 Intel i7-7700 2.8 GHz 2(1) 10 GB
Docker 2 Ubuntu 20.04 (QC Intel i7 2.2 GHz) (1) 12 GB

Table 2: Summary of computational environments for processing of the
data using PETPipeline
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Evaluation

» 14 brain regions were chosen for analysis namely amygdala,
thalamus, putamen, caudate, anterior cingulate cortex,
hippocampus, frontal cortex, occipital cortex, temporal cortex,
parietal cortex, entorhinal cortex based on previous studies by
Ngrgaard et al. [3]
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Evaluation

» 14 brain regions were chosen for analysis namely amygdala,
thalamus, putamen, caudate, anterior cingulate cortex,
hippocampus, frontal cortex, occipital cortex, temporal cortex,
parietal cortex, entorhinal cortex based on previous studies by
Ngrgaard et al. [3]

> To test for differences in binding potential (BP) across brain
regions and between different computational environments, we
did a one way ANOVA, and also compared the regression
slopes for statistical differences.

» The test-retest bias metric [3] was computed between the
resulting BP estimates from kinetic modelling obtained as a
result of running the pipeline across various computational
environments to identify any differences.

retest; ; — test; ;

Bias,-J = x 100

test; j
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Do we see any differences?

| Regions [ V™ Dockerl | Server | Docker2 | Mean Variance
Amygdala 1.66547 | 1.663995 | 1.634389 | 1.663995 | 1.656962 | 0.000227
Caudal Anterior Cingulate Cortex | 0.707916 | 0.708198 | 0.714869 | 0.708198 | 0.709795 | 1.1e-05
Caudate 1.505885 | 1.507484 | 1.472801 | 1.507484 | 1.498413 | 0.000292
Entorhinal Cortex 1.008542 | 1.008232 | 0.946286 | 1.008232 | 0.992823 | 0.000963
Hippocampus 0.326675 | 0.324846 | 0.343451 | 0.324846 | 0.329954 | 8.2e-05
Inferior Temporal Cortex 0.395526 | 0.39625 | 0.371875 | 0.39625 | 0.389975 | 0.000146
Insula 0.966093 | 0.967939 | 0.928386 | 0.967939 | 0.957589 | 0.00038
Medial Orbitofrontal Cortex 0.421494 | 0.423251 | 0.501818 | 0.423251 | 0.442454 | 0.001567
Occipital Cortex 0.284816 | 0.282593 | 0.28846 | 0.282593 | 0.284616 | 8e-06
Putamen 1.896689 | 1.896622 | 1.880213 | 1.896622 | 1.892536 | 6.7e-05
Superior Frontal Cortex 0.377558 | 0.376259 | 0.374473 | 0.376259 | 0.376137 | 2e-06
Superior Parietal Cortex 0.565708 | 0.566033 | 0.563758 | 0.566033 | 0.565383 | le-06
Superior Temporal Cortex 0.465539 | 0.461582 | 0.470955 | 0.461582 | 0.464914 | 2e-05
Thalamus 1.48164 1.483333 | 1.451222 | 1.483333 | 1.474882 | 0.000249

Table 3: Mean BP values for 14 different brain regions and across 4
different computational environments for a single subject from the
[11C]DASB 5-HTT dataset
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Superior Temporal Cortex 0.465539 | 0.461582 | 0.470955 | 0.461582 | 0.464914 | 2e-05
Thalamus 1.48164 | 1.483333 | 1.451222 | 1.483333 | 1.474882 | 0.000249

Table 4: Mean BP values for 14 different brain regions and across 4
different computational environments for a single subject from the
[11C]DASB 5-HTT dataset
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Differences across computational environments
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Figure 16: Mean BP estimates across 2 subjects and 2 sessions for
different environments for two brain regions from the [11C]|DASB 5-HTT
dataset.
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Differences across subjects
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Figure 17: Slope estimates of BP across different brain regions for
different subjects and sessions across different computational

environments. 30/41



Why do these differences arise?

> significant bias across brain regions
and variance in the bias across
subjects
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FIgU re 18: Time activity curve for the Medial
Orbitofrontal Cortex across two different computational
environments (VM and server), highlighting the uptake of
radioactivity within this region as a function of time
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Why do these differences arise?

significant bias across brain regions
and variance in the bias across
subjects

Variations due to difference in the
cortical and sub-cortical
segmentations obtained.

Difference in the operating system,
library and system call interception
and floating point arithmetic as
previous studies show
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FIgU re 18: Time activity curve for the Medial
Orbitofrontal Cortex across two different computational
environments (VM and server), highlighting the uptake of
radioactivity within this region as a function of time
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Is the pipeline robust and computationally reproducible?

» Since the pipeline completed running successfully on different
datasets, the developed pipeline seems to be robust.
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Is the pipeline robust and computationally reproducible?

» Since the pipeline completed running successfully on different
datasets, the developed pipeline seems to be robust.

P The results can be replicated given that the computational
environment is consistent in terms of the software packages,
operating system and configuration parameters used.

» The details of the preprocessing including the inputs and
outputs to the various preprocessing steps are captured as a
computation graph making the methodology transparent and
reproducible.
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x Limited Testing across environments and subjects.
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Summary of strengths and weaknesses

x Limited Testing across environments and subjects.

% No flexibility in terms of including/excluding preprocessing

steps in PETPipeline.

No flexibility in terms of software tools for preprocessing steps
in PETPipeline.

Flexibility offered in terms of changing parameters of
individual steps

Code and documentation available thereby making
PETPipeline reproducible

Documentation available for making the pipeline fully
executable in a docker container.
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Conclusion

» An automated pipeline was developed for preprocessing of PET
images using Nipype, and made available on GitHub.
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Conclusion

» An automated pipeline was developed for preprocessing of PET
images using Nipype, and made available on GitHub.

» The pipeline ran successfully on all datasets indicating that it is
robust to errors.

» Using the same computational resources such as OS, software
packages, versions and configurations across different computational
environments allows us to fully replicate the results indicating that
the pipeline is reproducible.
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Conclusion & Future Work

» Testing on computational environments with different
computational resources showed variations in the resulting BP
estimates across brain regions and subjects.
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Conclusion & Future Work

» Testing on computational environments with different
computational resources showed variations in the resulting BP
estimates across brain regions and subjects.

» These may be attributed to a difference in cortical and sub-cortical
segmentations obtained by FreeSurfer when run on different
computational environments.

» More thorough testing would help in further investigating these
differences which can aid in further understanding the cause.
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Thank you!

Questions?
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Additional Slides |

Statistical tests

» One Way ANOVA using computational environments as
repeated measures for 2 brain regions. ANOVA (Analysis of
Variance) is a statistical test used to analyze the difference
between the means of more than two groups

» Simple Linear Regression to find the best-fit slope and
intercept for the various subjects and sessions across different
computational environments. Comparison of Regression slopes
using p values to evaluate the differences.
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Additional Slides Il

Choice of programming language, and library (Nipype) for
implementation
» Python: open source language, community support.
Implementation of various neuroimaging tools such as PyBids,
Nibabel, Nilearn available for neuroimaging analysis.

> Nipype: Interfaces to various command-line based
neuroimaging software such as FSL, AFNI, Freesurfer
available. Enables interaction between these tools in a single
workflow, combine multiple workflows into a single workflow.
Allows for parallel processing across multiple subjects in a
dataset.
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Additional Slides Il
Why BIDS?

» All data may not be necessarily available in the same format.
Different datasets can be in different formats such as Dicom,
Analyze etc.

» All the datasets need to be organized in a single format so that
standardized neuroimaging pipelines can be run on them. BIDS
provides a way to organize and structure the complex neuroimaging
data coming from different neuroimaging modalities. Widely
adopted by the neuroimaging community, a variety of tools have
been developed around it to promote data sharing, validation,
processing and analysis.

> BIDS also lists a specification for the derivatives of the various
image processing techniques applied on the datasets.

» Moreover, using a standardized structure promotes reproducibility as
it allows researchers to share each other's experimental results, and
promotes the development of software that can process
neuroimaging data following the BIDS structure.
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